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ABSTRACT

Particle filtering methods provide powerful techniques for solving
non-linear state-estimation problems, and are applied to a variety
of application areas in signal processing. Because of their vast
computational complexity, real-time hardware implementation of
particle-filter-based systems is a challenging task. However, many
particle filter applications share common characteristics, and the
same system design can be reused with appropriate streamlining.
To achieve this, a parameterized design framework for particle fil-
ters is proposed in this paper. In this framework, parameterization
of system features that vary over specific implementations enables
reuse of a generic design for a wide range of applications with
minimal re-design effort. Using this framework, we explore differ-
ent design options for implementing two different particle filtering
applications on field-programmable gate arrays (FPGAs), and we
present associated results on trade-offs between area (FPGA
resource requirements) and execution speed.

Index Terms — Field programmable gate arrays, Parallel architec-
tures, Recursive estimation.

1. INTRODUCTION
Particle filtering is a powerful, emerging methodology with a wide
range of applications in science and engineering. Researchers from
a variety of fields ranging from signal processing to statistics and
econometrics use particle filters because of its potential for coping
with difficult nonlinear and/or non-Gaussian noise problems. They
are based on the idea of approximating the probability density
functions (PDFs) of the state of a dynamic model by random sam-
ples (particles) with associated weights and propagating them
across iterations based on a probabilistic model of the state update
and the measurements. However, use of particle filters in real-time
systems has been limited due to their computational complexity. A
particle filter typically involves several complex mathematical
operations that are invoked at every iteration of the filter, as well as
a large a number of particles, which in turn results in high memory
requirements. A possible solution for real-time implementation of
such systems is parallelization with the use of multiprocessor sys-
tems [2]; but this is also restricted because of the presence of an
unavoidable computing step — resampling — which is serial in
nature, making it difficult to fully parallelize an implementation.
Though various efforts have been made to derive distributed resa-
mpling algorithms ([3]), complete parallelization has not been pos-
sible. This suggests the exploration customized solutions. 

Implementation of particle filter applications on hardware or hard-
ware/software codesign platforms is further challenging due to the
resource constraints on such platforms. Architectural design and
memory management for hardware implementations explored
before ([1]) mainly focus on one particle-filter-based application
and optimize the various resulting subsystems. Design and imple-
mentation of a generic yet highly optimized architecture for all
particle filter based systems is not possible because of the wide
range of applications to which particle filtering techniques are
applied currently and may be applied in the future. But, there are
many applications that share similarities as far as particle filtering
is concerned. A generic implementation framework that can be
suitably and easily reconfigured for different applications would
be of significant utility. A limited form of such a framework was
explored by Hong et al., where two particle filtering algorithms are
implemented on the same platform, and the system can be config-
ured to use any one of them through switching mechanisms [5].
However, our methodology uses a much higher-level and hence
more general approach. In particular, our methodology can be
applied to any arbitrary set of particle filtering algorithms, rather
than being constrained to a fixed, pre-defined set of algorithms.

In this paper a novel parameterized design framework to imple-
ment particle filter based applications on field programmable gate
arrays (FPGAs) is proposed to enable comprehensive design space
exploration of the whole system with attention to the interaction
between the various subsystems and the different particle filtering
parameter configurations that may be used across different appli-
cations. The class of applications towards which this work is
geared is particle filters with underlying one-dimensional models.
Extending such an architecture to multi-dimensional problems is
also of great importance and is a useful direction for future work.
Design and implementation details for experiments with two appli-
cations using the above framework are provided to demonstrate the
application of the framework and illustrate its advantages.

2. SYSTEM DESIGN FRAMEWORK FOR PARTICLE 
FILTER IMPLEMENTATION

Particle filters provide a method for recursively estimating the
unknown state , from a collection of noisy observations. The
state parameters to be estimated depend on the exact problem
being considered. The state transition and observation models are 
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where  is the system noise and  is the observation noise. 
represents the dynamically evolving state of the system, and  is
the observation vector of the system, which is corrupted by the
measurement noise  at instant . The particle filter estimates the
state of the system  and updates it based on the received, cor-
rupted observations. 

A particle filter based system essentially consists of the following
three computational steps: (1) Sampling: In this step, samples (par-
ticles) of the unknown state are generated based on the given sam-
pling function which provide an estimate of the current state of the
system and also propagate the particles from the previous time step
to the current time; (2) Weight Calculation: Based on the observa-
tions, an importance weight is assigned to each particle and (3)
Resampling: This step involves redrawing particles from the same
probability density based on some function of the particle weights
such that the weights of the new particles are approximately equal.

2.1 Overview
The architecture proposed in this paper for particle filters is based
on the computational framework described above. The wide range
of applications to which particle filtering techniques are applied
prohibits the focus on a generic system architecture suitable for all
applications. However, since there exist wide ranges of applica-
tions that use the same particle filtering algorithm with different
state models, it is possible to develop a generic architecture for a
subset of applications and streamline it for specific applications in
this subset. The goal of this framework is to provide the user a sys-
tematic approach for such streamlining — with the ability to
explore the various design tradeoffs between area and execution
speed — and provide the capability to implement a wide range of
applications with significantly reduced re-design effort. 

To achieve this, a parameterized design framework is proposed,
where the overall system is composed of small parameterized sub-
systems. Each such subsystem can be modified to the needs of a
wide range of applications, as well as to final target constraints by
setting appropriate parameters, such as the memory size, and the
number of particles. An overview of a two-processing-element
configuration of our architecture is given in figure 1. The frame-
work essentially consists of an array of processing elements (PEs),
and a resampling unit, along with a set of parameterized interfaces.
A PE consists of three units, a PEcore, a weight calculation unit
(WU), and a noise generator. Each of these units can operate inde-
pendent of changes in functionality of the other units. However,
the interaction between various units can change with the variation

in the functionality of any one unit. These changes are handled by
the interfaces so that the individual streamlined units need not be
redesigned, which would require significant effort. The PEcores
perform the sampling operation, while a separate weight calcula-
tion unit (WU) is used for calculating the weights. The PEcore as
well as the WU interact with memory banks whose sizes are
dependent on system parameters and hence they can be parameter-
ized as well. The interfaces provide parameterized interaction
between the various subsystems such as memory banks and the
resampling interface and perform synchronization operations. 

2.2 Design Framework
Figure 2 shows the overall design framework. We use Xilinx’s
System Generator for design and functional verification and the
Xilinx ISE tool-set for synthesis. Xilinx System Generator pro-
vides a hardware library that consists of various architectural units,
such as RAMs and adders, for modular design. It also allows the
use of custom Verilog or VHDL modules for system design. 

As mentioned in section 2.1, multiple processing elements (PEs)
for the sampling and weight calculation step are used. Within a
given PE, further pipelining can generally be used, but the degree
to which pipelining can be employed is strongly dependent on the
characteristics of the targeted application. The sampling and
weight calculation operations involve complex mathematical oper-
ations, and thus impose restrictions on the number of PEs that can
be implemented. The number of particles handled by each PE is 

, (3)

where  denotes the smallest integer that is greater than or
equal to the real number ;  is the number of particles; and  is
the number of PEs. A straightforward memory management
scheme for particle storage and updating is used. Three memory
banks or buffers are used for each PE for storing (1) sampled parti-
cles, (2) particle weights, and (3) resampled particles. Since the
number of memory banks that are available on a given platform is
limited, we have

, (4)

where  is the number of memory banks available on the targeted
FPGA board. The area consumed by the associated memory banks
directly depends on  and . The observation data is stored in a
shared memory between clusters of PEs. The memory interface for
this buffer handles the read requests from the PEs. The reading
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Fig. 1. Distributed particle filter architecture.
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from this memory for the th operation can be overlapped with
either the resampling step of the th operation, the sampling
step of the th operation, or both. However, if the system through-
put is greater than or equal to the observation input rate, this inter-
face becomes trivial as only a single buffer is required.

There are seven main interfaces corresponding to the operations of
(1) observation data reading, (2) sampled particle memory inter-
facing, (3) resampled particle memory interfacing, (4) particle
weight memory interfacing and (5) resampling unit interfacing.
Among these, the reading of observation data is not dependent on

 or , while the rest are dependent on  and . The resam-
pling unit varies based on the resampling scheme being used and is
functionally independent from the rest of the units. It is triggered
when all the  particles have been processed for a given iteration.
The resampling interface consists of a global address generator and
a local address generator. The global address generator generates
addresses for  particles and depends on . These addresses are
routed to individual PEs by the local address generator, which,
thus, depends on both  and . In this framework, systematic
resampling has been used. However, this can be easily replaced
with other sequential resampling mechanisms. Systematic resam-
pling is often a preferred method due to its computational simplic-
ity and good empirical performance. A library of these
parameterized interfaces and resampling schemes are created using
a combination of Xilinx System Generator hardware components
and custom HDL modules.

The execution time for resampling directly depends on  and is
constant over all iterations. Thus, the total execution time (in terms
of clock cycles) for one iteration is,

. (5)

where  is the latency due to the resampling unit,  is
the latency induced by the WU unit, and  is the execution
time of PEcore, which for a fully pipelined PEcore is given as

. (6)

For systematic resampling, the latency is given by [1]:

. (7)

This signifies that the latency of the resampling unit increases
directly with an increase in number of particles, and thus the
latency will generally become a bottleneck for applications requir-
ing very high . For the first processing iteration, any initial
latency that exists should be added to the latency model of (equa-
tion 6). Such initial latency may exist, for example, because of ini-
tial latency of the noise generator. For further details the reader is
referred to [7].

3. EXPERIMENTS AND RESULTS
In this section, implementations for two different particle filter
problems using the proposed framework are demonstrated along
with corresponding experimental results. The two systems were
designed and synthesized using Xilinx System Generator 9.1 and
Xilinx ISE 9.1. The target device family was the Xilinx Virtex 4
FPGA. Although the FPGA board used in the experiments could
support a clock frequency of 500 MHz, this frequency could not be

attained in most cases. By varying the parameters appropriately,
different implementations were obtained and various design
options were explored.

3.1 Uni-variate Non-stationary Growth Model
The first application explored is an example of a one-dimensional
non-linear system (typically studied in the context of stochastic
systems) [3]. The model is as follows

, (8)

, (9)

where  and , are zero-mean Gaussian white noise with vari-
ances 10 and 1, respectively. The execution of the PEs and the
resampling units is fully pipelined. The above equations were
mapped to appropriate Xilinx System Generator computation
blocks to build the PEcore and the WU. The noise generation was
performed using Xilinx’s Gaussian white noise generator. This
noise generator needs only periodic resetting to provide continuous
output, thus the PE interface did not have to send requests for data.
However, the initial latency of the generator is 10 cycles, which is
present only for the first iteration. Additionally, Xilinx’s lookup-
table-based cosine generators were used. These are both fast and
inexpensive (area-efficient) compared to standard CORDIC [8]
cosine generators. We employed fully-pipelined multipliers and
dividers. In the design, the WU uses an exponential calculation
unit that uses a combination of a look-up table and a polynomial
approximation method. Uniform random number generation for
resampling is done using multiple-bit, leap-forward linear feed-
back shift registers (LFSRs) [4]. Parameterized interfaces were
used to build the interconnections between the various subsystems.

3.2 Uni-dimensional Failure Prognosis Model
This practical particle filtering application is adapted from [6],
where particle filtering is used to track crack faults in the blades of
a turbine engine. The fault growth model is given by

, (10)

, (11)
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Fig. 3. Percentage decrease in execution time (1 iteration) for
uni-variate non-stationary growth model implementation.
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where  and  are zero-mean, Gaussian white noise with vari-
ances 10 and 1, respectively. The PEcore comprised of fully pipe-
lined multipliers and a divider, all of which are fully pipelined
cores from Xilinx. The Gaussian white noise generator, exponen-
tial calculation unit, and uniform random number generator used in
section 3.1 are reused again. The resampling unit and interfaces
were selected from the library and design space exploration is done
by varying  and . 

3.3 Results
The percentage decreases in execution times compared to serial
execution are shown in figures 3 and 4 for the various design cases
while the tracking results are shown in figure 5. The results shown
are for one iteration at steady state — i.e., not the first iteration,
where there is additional latency due to the Gaussian white noise
generator. The resource utilizations of the various implementations
(200 particles) are shown in table 1 (the DSP48 utilization is same
for both the applications due to their similar nature). The block
RAM (BRAM) memory banks available for the Virtex 4 device
family are each of size 18Kb, which is much higher than what is
required for any of the implementations. Increasing  affects only
the required memory bank sizes, thus the resource utilization
remains the same for different numbers of particles. However, for
applications with larger memory requirements, this would not be
the case. Note that the execution times for both of the applications
are similar because the latencies of the PEs are relatively small
compared to the latency induced by . 

4. CONCLUSIONS.
In this paper, a new methodology for design, modeling and explo-
ration for particle filters on reconfigurable system-on-chips (SoCs)
has been presented. Our methodology uses the notion of parame-
terization to provide a useful tool for evaluating multiple design
alternatives, and exploring the associated trade-offs in an efficient
and intuitive manner. It also provides scope for implementing a
wide range of applications with minimal redesign effort between
different applications. For both of the applications that we exam-
ined, the execution speed was determined mainly by the number of
particles, and thus, the latency of the resampling unit played a sig-
nificant role in determining the overall execution time. This
stresses the need to look further into methods for optimizing this
unit. Although multiple expensive (area-consuming) computa-
tional units were used, the area constraint imposed by the target
platform was met. The large underutilization of the block RAMs

indicates potential for extending this architecture to systems with
higher memory requirements, and this is an interesting direction
for future work.
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tionary growth model (Applcn 1) and unidmensional failure
prognosis model (Applcn 2) implementation.
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